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A number of formulations of the contact problem of the theory of elasticity when there is friction present in the case of 
unidirectional relative sliding of the interacting bodies (movable coupling of the sliding guide type) are considered. Particular 
attention is given to the behaviour with time of the contact shearing stress ql in a plane perpendicular to the sliding direction. 
It is established that this stress relaxes (decays) with time, which may serve as a basis for formulations of contact problems with 
unidirectional sliding of bodies, assuming that there is no stress ql in the contact area [1-4]. © 2005 Elsevier Ltd. All rights reserved. 

1. THE O N E - D I M E N S I O N A L  P R O B L E M  

We will consider, as a simple example of contact interaction with unidirectional sliding of bodies, a system 
of two bodies, similarly loaded and connected by a deformed spring, which slides with friction along a 
flat surface with a constant velocity V in a direction perpendicular to the axis of the spring (Fig. 1). 
This will enable us to investigate the characteristic features of such interaction. The value of the friction 
force F acting on each body is given by Coulomb's law: IFI - F  = f Q  + Fa, where 0 <fiE the friction 
coefficient, Q is the load on the body and Fa is the adhesion interaction force; in this case F = -FVs/V~, 
where Vs is the sliding velocity of the body. As regards the value of T (the elasticity force of the spring) 
it is assumed that it is linearly related to the deformation (Hooke's law): T = --7 (x -2) ,  where 7 is the 
stiffness of the spring, x is the distance between the bodies and ~ is the value ofx  for the underformed 
spring. 

When the elastic system considered slides, the distance x changes. If we set up the balance of the 
forces, equating the projection of the friction force F onto the axis of the spring to the value T of its 
force of elasticity, we arrive at the following equation for x(t) 

Fdx( t ) ld t  ~ y ( x ( t ) -  2) = 0 

~/(dx(t)/dt) 2 + V 2 
(1.1) 

We will further assume that t > 0 and specify the initial condition x(0) = x0. 
The implicit expression for the solution of Eq. (1.1) has the form 

H ( ~ l (  t ) ) - H ( ~ l o )  = - c o t  

H(g)  1 - d l - g 2  x ( t ) - 2  Xo-  V 
= +~/1-~2 ,  gt(t) = y ~  gt o 7 F 

1 + dl- = ' = ' tO = 
(1.2) 

By virtue of Eq. (1.2) H(~( t ) )  ~ _~o when t ~ oo, whence it follows that ~g(t) ~ 0 when t -~ _oo, 
since the function H(~) is even, increases monotonically when ~ > 0 and H(~) ~ -oo when ~ ~ 0 + 0. 
The limit relation obtained for ~g(t) denotes that T(t) = -F~( t )  ~ 0 when t ~ ~o, i.e. in the elastic system 
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considered there is relaxation of the force of elasticity of the spring tangential to the sliding surface. 
When I~/F-l(x0- 2) 1 ~ 1, from relation (1.2) we can obtain explicit expressions for x(t) and T(x) 

- - ~ t  

x ( t ) - 2  = ( X o - X ) e  , T( t )  = To e-m' (1.3) 

2. BASIC RELATIONS FOR AN ELASTIC SOLID 

Consider a cylindrical elastic solid, bounded by the surface F. Following the well-known approach [5], 
we will connect with a certain point of this body the origin of a system of coordinates x, y, z, directing 
the z axis along the generatrix of the boundary of F (Fig. 2). We will denote by u, v, w and ql, q2, q3 the 
components of the vectors of the boundary displacement and the boundary stress in the system x, y, z. 

We will assume that the boundary F has a plane section, situated parallel to the coordinate plane xz 
with ordinate y = Y0, and unidirectional sliding of a cylindrical punch occurs along this part in the 
direction of the z axis with velocity V (Fig. 2). There is no displacement of the punch along the x axis, 
and the dimensions a and b of its contact region with the solid are assumed to be constant. Moreover, 
the specific load Q > 0 on the punch along the y axis is assumed to be constant, in which case we have 
the following equilibrium condition 

b 

a = - f q2(x' t )dx (2.1) 
- a  

The interaction of the punch with the elastic solid described corresponds to a mixed boundary-value 
problem of the theory of elasticity. The boundary conditions outside the contact region can have a 
different form depending on the possible loading and clamping conditions of the corresponding parts 
of the boundary [1, 6], whereas in the contact region these conditions are determined by Coulomb's 
friction law and the contact condition. Unlike the integral form of Coulomb's law used in Section 1, 
we will present it here in the form 

V~ 
q~ = ~ss(- f q2 +'Ca) (2.2) 
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where q~ is the shear stress vector at a point of the boundary of the solid, Vs is the velocity of sliding 
of the punch with respect to this point, and 0 _ za is the adhesion component of the friction. Taking 
into account the fact that q~ = (ql, 0, q3) and Vs = (-ti, 0, V -  if), the vector equality (2.2) can be written 
in the form of its components 

q l ( x , t )  - f i (x ' t )  x (x , t ) ,  q3(x , t )  = V - f v ( x ' t ) ' c ' x , t ) ,  x e  [ -a ,b]  (2.3) 
Vs(x, t) V,(x,  t) 

where 

" ~ ( x , t ) = - f q 2 ( x , t ) +  T. a, Vs(x , t )  = J u 2 ( x , t ) + ( V - w ( x , t ) )  2 (2.4) 

The dot above a symbol denotes a partial derivative with respect to time t, t _ 0. 
Note that the functions qi(x, t) (i = 1, 2, 3) which satisfy Eqs (2.3) are related by the equation 

q21(x, t) + 2 q3(x, t) = 'l;2(x, t) ---- [-  f q z ( x ,  t) + "[a] 2 (2.5) 

which follows directly from relations (2.3) and (2.4). 
The condition for the punch to be in contact with the elastic solid has the form 

v(x ,  t) = g ( x ) -  ~(t),  x ~ [-a, b] (2.6) 

where 5(0 = -a3(0, t) is the value of the sagging of the boundary of the body whenx = 0, g(x) is a function 
describing the shape of the punch and g(0) = 0. 

Equations (2.3) describe the rate of variation with time of the displacements u and w within the contact 
region as a function of the contact stresses qi, which, together with the equilibrium condition (2.1) and 
the contact condition (2.6) as well as the boundary conditions outside the contact region, defines the 
kinetics of the variation with time of the stress-strain state of the elastic solid. We will further assume 
that the following initial conditions are given 

qi(x, O) = qio(X), i = 1, 2, 3 (2.7) 

In the case of a high sliding velocity V of the punch, when 

Ik(x, t)/VI - e "~ 1, bb(x, t)lVI - e ~ 1 (2.8) 

the following expressions hold for the fractions occurring on the right-hand sides of Eqs (2.3) with an 
accuracy of O(e ~) 

fi(x, t) /Vs(X , t) = fi(x, t ) /V,  ( V -  ¢v(x, t ) ) lVs(x  , t) = 1 

using which, Eqs (2.3) can be written in the form 

q t ( x , t )  = - k ( x , t ) x ( x , t ) l V ,  q3(x , t )  = X(x, t ) ,  x ~  [-a ,b]  (2.9) 

We can draw a number of conclusions regarding the structure of the stress-strain state of an elastic 
solid under conditions of unidirectional sliding, which will enable us later to reduce the solution of the 
corresponding three-dimensional problem to a simpler two-dimensional problem. We will denote by 
ui and oij the components of the displacement vector and the stress tensor, ascribing the subscripts i, 
j = 1, 2, 3 to the coordinate axes x, y, z respectively. For the interaction of the punch with the elastic 
solid considered, the stress-strain state of the elastic solid, as well as its geometry, do not change along 
the z axis, and hence the derivatives of the displacements ui with respect to z are equal to zero. If we 
take this fact into account, and, following the well-known approach in [1], write the differential equations 
of elastic equilibrium of the solid in terms of displacements (Lam6's equations) and Hooke's  law, it 
turns out that some of these equations will describe plane deformation [7] and contain the components 
IA1, U2, 1311, 1322, 1333, 1312, whereas the remaining equalities describe antiplane deformation (pure shear) 
[6] and contain the components u3, 013, 623. With these systems of the stress-strain states, in turn, proved 
to be connected the different sets of components u, ~, ql, q2 and w, q3: 

for plane deformation 

Ul[ r = u, U2[ r = 1), (1311nl +1312n2)lr = ql, (IJZlnl +1322nz)lr = q2 (2.10) 
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for antiplane deformation 

u3l r = W, (~31nl + O32n2)lr = q3 (2.11) 

where nl, n2, n3 = 0 are the components of the vector of the outward normal to the boundary F of the 
solid. 

In general, when we have Eqs (2.3), both stress-strain state systems turn out to be mutually connected 
via the boundary conditions (Eqs (2.10) and (2.11)). In fact, the first equation of (2.3) contains, in addition 

t O  u, q i  and q2, a component w, connected with the antiplane deformation system, whereas the second 
equation of (2.3) contains, in addition to w and q3, the components u and q2, connected with the plane 
deformation system. The position is simplified if we used Eqs (2.9), since the first equation of (2.9) 
only contains the components u, ql and q2, connected, by virtue of relations (2.10), with plane 
deformation. Together with the equilibrium condition (2.1) and the contact condition (2.6), this equation 
forms a set of boundary conditions for the plane-deformation equations, after solving which and 
determining q2 the second equation of (2.9) can be used as the boundary condition for the antiplane- 
deformation equations. 

Note  that it was pointed out earlier in [3] that antiplane deformation has no effect on plane 
deformation. A similar situation occurs when the axisymmetric contact problem with friction is 
considered [1]. 

3. A THIN LAYER (A W INKL E R  BODY) 

Suppose a thin layer of thickness h, connected with an absolutely rigid base in its lower boundary, serves 
as the elastic body (Fig. 3). We also connect the origin of a system of coordinates with a point of this 
boundary. Assuming the layer is thin, i.e. when h ~ (a + b), its deformation is described by the model 
of a Winkler body [8] 

h (1 -2v )h  (3.1) 
u = 0~ql, o = ~q2, w = o~q3; a = ~ ,  13 = 2 G ( 1 - v )  

where G is the shear modulus and v is Poisson's ratio. 
Replacing the variable v in the second relation of (3.1) by the right-hand side of the contact condition 

(2.6) we obtain the expression 

q2(x, t) = ~-l[g(x)-8(t)] <0 (3.2) 

and substituting this into the equilibrium condition (2.1) and taking into account the fact that Q, a and 
b are constants, we can establish that the quantity fi occurring in the contact condition is independent 
of time 

b 

~i(t) = (a + b)-lI~Q + Sg(x)dx I = const 

Bearing this result and expression (3.2) for q2(x, t) in mind, we can convert Eq. (2.4), which defines 
~(x, t), as follows: 

"~(x, t) = - f~-I [g(x) - 5] + "C a ~ Z0(X ) ~ 0 (3.3) 

~y 

Fig. 3 

X 
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We now use Eqs (2.3). Substituting the first and third expressions of (3.1) into them and taking 
expression (3.3) into account, we obtain 

ql(x, t) V -  a~3(x, t) 
ql (x , t )  = - o ~ ' C o ( X  ), q3(x,t)  = Vs(x , t  ) "Co(X), x e  [-a,b]  (3.4) 

It follows directly from the first equation of (3.4), in view of the fact that ix, x0 and V~ are non-negative, 
that 01 (x, t) > 0 when ql(x, t) < 0 and 01 (x, t) < 0 when ql(x, t) > 0, i.e. the function which satisfies 
relations (3.4) decays with time 

Iql(x,t)l---)O as t - ~ ,  x e  [-a,b]  (3.5) 

Note that by the conclusions reached in Section 2 regarding the interaction of plane and antiplane 
deformation systems when the general equations (2.3) are used, each of equalities (3.4) contains 
quantities which refer to both of these systems and each of the equalities depends on the other. 
Nevertheless, for Eqs (3.4) we can obtain an exact solution if we convert them as follows: divide the  
first equation by the second and then eliminate the derivatives ql (x, t) and q3 (x, t) in turn from the 
equation obtained using Eqs (2.5) and (3.3). As a result, Eqs (3.4) take the form 

0~ 2 , q3(x,  t) 1 q3 x, t) . . . .  , x ~  [ - a ,  bl  (3 .6 )  
to(X) %(x) 3 

Solving the second equation of (3.6) first and then solving the first equation of (3.6) using the function 
q3(x, t) obtained, taking the initial conditions (2.7) into account, we obtain the expressions 

2qlo(X) -°J(x)t B_(x, t) 
ql(x,  t) = B+(x, t) ' q3(x,  t) = "Co(x)B+(x, t) (3.7) 

where 

B±(x, t) = A+(x) + A_(x)e -2t°(x)t, A+(x) = 1 +_ q3°(x) o~(x) - V 
x0(x) ' c~o(X) 

If we use Eqs (2.9) instead of (2.3) we have 

ql(x, t) = qlo(x)e -°~(x)' (3.8) 

As might have been expected, both expressions (3.7) and (3.8) satisfy relation (3.5), in which case 
the relaxation (decay) of the stress ql(x, t) with time occurs exponentially. 

Remark 1. The initial shear stress ql in the case considered may be due to a preliminary shift of the punch along 
the x axis. For example, if this shift leads to complete slippage of the punch, then, by virtue of relations (2.2), (2.5) 
and (3.3), qlo(X) = +-Zo(X), q30(x) = 0 and expressions (3.7) take the form 

qj(x, t) = +'Co(X)/ch(o~(x)t ), q3(x, t) = ~o(x)th(ol(x)t) (3.9) 

4. A C O M P O S I T I O N  C O N S I S T I N G  OF A T H I N  L A Y E R  AND 
A H A L F - S P A C E  

Unlike the previous formulation, we assume here that the base connected with the layer behaves as an 
elastic half-space, while the punch itself and its loading conditions are symmetrical about the y axis 
(b = a), in which case the origin of coordinates is assumed to be connected with a point on the upper 
boundary of the layer, situated in the middle of the contact region [--a, a]. With this choice of the system 
of coordinates, the contact condition (2.6) takes the form 

V(x, t) = g(x),  x ~ [ -a ,a ]  (4.1) 
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where, by virtue of the symmetry of the problem, g(x) is an even function. Moreover, the symmetry of 
the problem enables us to assume that qffx, t) is an odd function ofx  while q2(x, t) is an even function 
ofx. 

In addition to the previous condition that the layer is thin (h ~ 2a), we will assume that n - 
Ga/G2 < 1, i.e. the layer is soft compared with half-space. Here and henceforth the subscripts 1 and 2 
are assigned to quantities belonging to the layer and half-space respectively. The purpose of our further 
calculations, as previously, will b e  to analyse the behaviour with time of the contact shear stress ql. 

It was shown above (Section 2), that under conditions of unidirectional sliding of the punch along 
an elastic body of cylindrical form, the stress-strain state of the latter splits into two systems: plane and 
antiplane deformation. It is easy to establish that in the two-layer composition considered here, the 
same two systems of stress-strain states occur, where the first of these is determined, according to 
relations (2.10), by the components u, ~, ql and q2 on the upper boundary of the layer (fory = 0). In 
fact, since there is no change in the loading conditions and the geometry of the layer and the half-space 
along the z axis, the stress-strain state of each of them splits into the two systems indicated above (Section 
2), and any change in the components w and q3 on the upper boundary of the layer, when u, t), ql and 
q2 are unchanged, has no effect on the plane deformation of the layer (see Eqs (2.10) and (2.11)) and, 
in particular, on the values of the components u, ~, ql and q2 wheny = -h (i.e. at the interface of the 
layer and the half-space), by which the plane-deformed state of the half-spaces as a whole is determined. 

The presence of a plane-deformation system, including the stress ql, in the elastic body considered, 
enables us to use the plane-deformation equations for the strip - half-plane composition for the purpose 
of determining the stress qa. According to these equations, when h ~ 2a and n ~ 1 we have the following 
relations between the components u, v, ql and q2 on the upper boundary of the layer [9] 

Gu'(x, t) = A~q'l(X, t) + nMcq2(x, t) + nMDO£ql)(X, t) 

Gv'(x, t) = Avq'2(x, t ) -  nMcql(x, t) + nMD(~qz)(X, t) 
(4.2) 

where 

1 - 2 v  2 1 - v  2 
G = G 1, Mc = 2 ' MD = 

12v, rl 2v, 1 2  lh+o,n2  A~ = [ l + ( 1 - 2 V z ) n ] h + O ( n 2 ) ,  A v = ~i---~)L T--  (4.3) 

Or~o)(x) = I ~({)d{ 
{ - x  

The prime denotes differentiation with respect to x. 
We will convert Eqs (4.2). To do this we will assume that the functions ql,2(x, t) in the contact area 

are quadratically summable with respect x: 

ql, z(X, t )~ L2[-a,a]; t~  [0, T] (4.4) 

where 0 < T is a certain quantity, where here and henceforth the integrals are understood in the 
Lebesgue sense [10]. The stresses qi(x, t) (i = 1, 2, 3) are assumed to be equal to zero outside the contact 
area. 

We introduce the following operators 

a 

- 1 7  

X 

(@oq~)(x) = IqI(~)d~, ~(x) E L2[-a, a] (4.5) 
o 

and note the equality which connects the operator g£ of the form (4.3) with ~0 [11] 

X 

I(~£q~)({)d{ = (Y0q~)(x), g)(x) ~ L2[-a, al 
0 

(4.6) 
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Returning to equalities (4.2), we replace the variable x by { in them and integrate the result with 
respect to ~ from 0 to x. Using relations (4.4)-(4.6), we arrive at the equalities 

A~ql(x, t) = Gu(x, t) - nMc(~oq2)(x, t) - nMD(~oql)(x, t) 
(4.7) 

Av[q2(x, t) - q2(0, t)l = Go(x, t) + nMc(~oql)(x, t) - nMD(~oq2)(x, t) 

By acting on the right-hand sides of equalities (4.7) with the operator ~0 we can obtain expressions 
for (~0ql, 2)(x, t), and substituting these into the equations we obtain 

A~ql(x, t) = Gu(x, t) --nMD(S£oql)(X, t)-- 

t ) x -  nMc g ( ~ o V ) (  x, t) - n2Axpl(x, t) nmcq2(O, 
~v (4.8) 

t)] = Go(x, t) - nMD(£~oq2)(x, t) + nMc-~z(~oU)(X, t) - naAvP2(x, t) Av[q2(x, t )  q2(O,  

where the following limit holds for the functions pl,2(x, t) 

]Pl,2( x' t)l < 2a3/Z[axAvl -lmax{llqlll, ]lq21l } 

which shows that the last terms in Eqs (4.8) are of the order of n 2 and can be omitted when n ~ 1. 
Here and henceforth II q ll is the norm of the function q0(x) in the space L2[-a, a]. 

To analyse the behaviour of the shear stress qffx, t) we will use the first equality of (4.8), which, in 
addition to the required function ql(x, t), contains the unknown functions q2(0, t) and v(x, t). However, 
the latter can easily be eliminated from this equation. In fact, the function v(x, t) is expressed in terms 
ofg(x) by the contact condition (4.1), while the following expression holds for the function q2(0, t) 

q2(0, t) = -(2aAv) -l AvQ + g(x)dx + O(n) 

which is obtained if we integrate the second equality of (4.8) with respect to x from -a to a and take 
into account the equilibrium condition (2.1) and the contact condition (4.1). If these expressions are 
taken into account the first equality of (4.8) takes the form 

A~ql(x, t) = Gu(x, t) -nMD(~oql)(x ,  t) + U(x) (4.9) 

where U(x) is a known function which depends on Q and g(x). 
We will further consider the case (2.8) for a high sliding velocity V of the punch when its frictional 

interaction with the layer has a purely adhesion form, i.e. f = 0. These assumptions enable us to use 
the first equality of (2.9) to describe the kinetics of the variation of the stress ql by representing it, taking 
the first expression of (2.4) into account, in the form qffx, t) = -T, a V - l u ( x ,  t), or, after integrating with 
respect to t, 

t 

u(x, ') = - V Iql(x, x)dx + u(x, 0) (4.10) 

a 0 

If we replace the function u(x, t) in Eq. (4.9) by the right-hand side of (4.10) and carry out a simple 
reduction of this equation, using the fact that qffx, t) is odd in x, and the definition of the function U(x) 
in terms of the initial distribution qlo(X) = ql(x, 0), we can finally obtain the following equation for 
ql(X, t) 

t 

aoqi(x, t) = - Iql(x, x)d"C- al(~ql)(X,  t) + aoqlo(x ) + a l (Yqm)(x)  (4.11) 
0 

where 

i ~ XaA~ ~anMD (4.12) 
( ~ ) ( x )  = -  tp(~)ln d~; A 0 = - - ~ ,  A 1 - VG 

-a  

andA0,1 > 0 for n < 1 and v e [0, 1/2). 
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Equation (4.11) contains no quantities relating to the antiplane deformation system of the body, and 
this agrees with the conclusion reached in Section 2 that the plane deformation is independent of the 
antiplane deformation when using Eqs (2.9). 

Proceeding to the solution of Eq. (4.11), we note that the operator ~ is strictly positive [2], self- 
conjugate (since the kernel In I({ -x) /a  is symmetrical) and is completely continuous in the space 
L2[-a, a] [12] where the latter is Hilbert-separable. These properties ensure the existence of systems 
of eigenvalues )~k and functions Xk(X) of the operator ~ [12] 

3.k(~Xk)(X) = Xk(x), k = 1, 2 .... (4.13) 

where the system {Xk(x)}, being complete in the space L2[-a, a], forms an orthonormalized basis in it, 
such, that for any function q0(x) from this space (everywhere henceforth, unless otherwise stated, the 
summation is carried out from k = 1 to k = o~) 

a 

(~9)(x)  = ~K~'(q0, Xk)Xk(x); (cp, Xk) = I g ( x ) X k ( x ) d x  (4.14) 
--a 

From Eq. (4.13), provided that 5¢ is a strictly positive operator, it follows that the quantities ~,k are 
positive. Henceforth kk will be numbered in increasing order: 

0 < ~ ,  I < ~ 2 - - <  ~ 3 . . .  

Using assumption (4.4) and following Fourier's method [13, 14], we can represent the function 
ql(x, t) in the form of an expansion in an orthonormalized basis {Xk(x)} 

ql(x,t)  = ~ak( t )Xk(x) ,  t~  [0, T] (4.15) 

As is well known [13, 14], to determine the coefficients ak(t) of this expansion we must substitute 
series (4.15) into Eq. (4.11) and formally introduce the operation of integration into it under the sign 
of the sum of the series, after which, using Eq. (4.13) and the fact that the system (Xk(x) } is orthonormalized, 
we can obtain an ordinary differential equations for ak(t) with the solution 

-0)  k t 
ak(t ) = ak(O)e , ¢-o k = ~,i(Ao~,k+Al)-l>0 (4.16) 

Taking the initial conditions (2.7) and expansion (4.15) into account, the values ak(0) will be found 
from the equality 

ql0(X) = ~at(O)Xk(x)  (4.17) 

Then, assuming, relative to the unknown function ql0(x), that 

qlo(X) ~ L2[-a, a] (4.18) 

we obtain: ak(0) = (ql0, Xk), where, by Parseval's equality [12] 
a 

PIq,o(- f 2 2 qlo(X)dx = ~ak (0  ) < ~o (4.19) 
- a  

Before establishing the conditions under which series (4.15) with coefficients (4.16) can be used as 
a solution of the problem in question, we will note some results connected with the convergence of this 
series, uniform in t s [0, 7]. 

Assertion 1. Suppose series (4.17) converges in the usual sense for a certain x ~ [-a, a]. Then, for 
this x we have the convergence of series (4.15) with coefficients (4.16), uniform in t e [0, T], and the 
equation 

t t 

[~ak(0)e  Xk(x)]d'¢ = e d'¢ ak(O)Xk(x ) (4.20) 
0 t-O -J 



Relaxation of the contact shearing stress in problems with sliding friction 109 

Proof. Bearing equality (4.17) in mind, we will represent series (4.15) with coefficients (4.16)in the form 

-OJkt -Aolt 
y ak(O)e Xk(X) = ~ak(O)Xk(x)lgk(t ) + e ql0(x) 

-0~kt -a~t (4.21) 
Ok(t ) = e - e  , limco k = A0 I>0. 

k ---) ~ 

The positive sequence {vk(t)} is non-increasing the the set [0, 7] and converges to zero uniformly in this set. 

In addition, as a consequence of the convergence of series (4.17) at the point x, the sequence { ]~ ak(O)Xk(X)} is 
k = l  

uniformly bounded in the set [0, T]. These properties enable the Dirichlet-Abel criterion [15] to be used and also 
enables us to establish that the series on the right-hand side of (4.21) and, consequently, series (4.15) also converges 
uniformly in t s [0, T]. 

After establishing that series (4.15) with coefficients (4.16) converges uniformly in t s [0, 7], the correctness of 
equality (4.20) follows directly from the well-known theorem on the term-by:term integration of a uniformly 
converging series [15]. 

Assertion 2. Suppose we have the inclusion (4.18), the function qlo(X) is odd and series (4.17) converges 
at each point of the segment [-a, a] in the usual sense. Then the function ql(x, t) in the form of series 
(4.15) with coefficients (4.16) satisfies Eq. (4.11), it is odd with respect tox  and assumption (4.4) holds 
for it. 

Proof. We recall that expression (4.16) for the coefficients ak(t) of series (4.15) was obtained by substituting the 
latter into Eq. (4.11) and formally interchanging the order of the integration and summation operations. Having 
equalities (4.14) and (4.20) available, we can justify the correctness of similar rearrangements and thereby establish 
that series (4.15) with coefficients (4.16) satisfies Eq. (4.11). 

To check the assumption that the function ql(x, t) is odd in x we will introduce the system of functions Yk(x) = 
Xk(-x), which correspond to the previous eigenvalues Lk of the operator ~ and which also forms an orthonormalized 
basis in L2[-a, a]. Using the fact that the function ql0(X) is odd, we can establish that the expansion of the function 
ql(x, t) in the system Y~(x) differs from expansion (4.15) with coefficients (4.16) only in sign. Adding these expansions 
we obtain the equation 

--(Okl 
2ql(x, t) = ~ak(O)e  [Xk(x ) -  Yk(x)] 

which confirms that ql(x, t) is odd inx. 
To check the assumption (4.4) we will use the Riesz-Fisher theorem [10], according to which, series (4.15) for 

a specified t ~ [0, T] converges in the root mean square to a certain function from L2[-a, a], provided the series 
~/~(t) converges for this t. The latter in fact occurs in view of relation (4.19) and inequality 2 < 2 ak(t ) _ ak(O ), which 
follows from relations (4.16). 

Using Parseval's equality [12] for expansion (4.15) and taking expression (4.16) for ag(t) into account, 
we can write 

i]q~[lz(t) z (4.22) : Z a k ( t ) :  Z a ~ ( O ) e  -2°~kt 

We recall that the sequence {c%} is defined by (4.16) in terms of positive constantsA0 andA1 and is 
monotonically increasing. This fact, together with Eq. (4.19), enables us to obtain the following limit 
from relations (4.22) 

I[qJll( t) < [[q,olle -°~'t 

which indicates the decay with time of the norm [I ql II- This property can be interpreted as the presence 
of relaxation with time of the function ql(x, t) from L2[--a, a]. 

Remark 2. Satisfaction of condition (4.18) ensures that series (4.17) converges in the root mean square, which 
does not guarantee the convergence of this series at points of the segment I-a, a] [10], and hence the condition 
for term-by-term convergence of series (4.17), present in Assertions i and 2, has an independent character. On 
the other hand, for any specified function qlo(X) ~ L2[-a, a] a function q~o(x) ~ L2[-a, a] can be found which differs 
by as little as desired in the norm of the space L2[-a, a] from qlo(X) and for which the condition for term-by-term 
convergence of series (4.17) in the segment [--a, a] is satisfied; by virtue of the convergence of this series in the 
root mean square the following linear combination possesses this property 

q~o(X) = al(O)Xl(x ) + ... + an,(O)Xn,(X) 

for sufficiently large integer n,  > 0. 
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Remark 3. We will put n = 0 in relations (4.15) and (4.16), which corresponds to the case of the absolutely rigid 
half-space considered in the previous section - expression (3.8) f o r f  = 0. According to Eq. (4.16) the coefficients 
¢0k for n = 0 take the value co, = GV(zah) -a, which is independent of k, and hence, taking Eq. (4.17) into account, 
expansion (4.15) gives the expression 

-co, t 

ql(x,  t) = qlo(x)e (4.23) 

which is identical with expression (3.8) mentioned above whenf  = 0. 
In addition, we mention the analogy between expression (4.23) and expression (1.3) for the force T of elasticity 

of the spring tangential to the sliding surface in the problem in Section 1. In both cases the exponents ¢o and co. 
of the exponential decay of T and ql turn out to be directly proportional to the velocity V and the stiffness of the 
elastic system (7 and G/h) and inversely proportional to the frictional interaction parameter (F and za). 

Remark 4. A comparison of the formulations of the problems considered enables us to reveal the following 
fundamental conditions of the asymptotic form ql --+ 0 as t ~ o~: the unidirectionality of the sliding of the punch 
(i.e. the fact that there is no displacement of the punch with respect to the system of coordinates in the direction 
of the x axisafter sliding begins along the z axis), the fact that the contact area remains unchanged and the fact 
that the load on the punch along the y axis remains constant. 

This  work  was s u p p o r t e d  f inancial ly by the  Russ ian  F o u n d a t i o n  for  Basic R e s e a r c h  (01-01-00034) 
and  the  In t e rna t iona l  Assoc ia t ion  for  P romot ing  C o o p e r a t i o n  with Scientists  f rom the  I n d e p e n d e n t  
S ta tes  of  the  F o r m e r  Soviet  U n i o n  ( INTAS 99-0671). 
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